Rigid Two-Dimensional Frameworks with Two Coincident Points

نویسندگان

  • Zsolt Fekete
  • Tibor Jordán
  • Viktória E. Kaszanitzky
چکیده

Let G = (V,E) be a graph and u, v ∈ V be two distinct vertices. We give a necessary and sufficient condition for the existence of an infinitesimally rigid two-dimensional bar-and-joint framework (G, p), in which the positions of u and v coincide. We also determine the rank function of the corresponding modified generic rigidity matroid on ground-set E. The results lead to efficient algorithms for testing whether a graph has such a coincident realization with respect to a designated vertex pair and, more generally, for computing the rank of G in the matroid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigid Two-Dimensional Frameworks with Three Collinear Points

Let G = (V,E) be a graph and x, y, z ∈ V be three designated vertices. We give a necessary and sufficient condition for the existence of a rigid twodimensional framework (G, p), in which x, y, z are collinear. This result extends a classical result of Laman on the existence of a rigid framework on G. Our proof leads to an efficient algorithm which can test whether G satisfies the condition.

متن کامل

A boundary element study for evaluation of the effects of the rigid baffles on liquid sloshing in rigid containers

In this paper, the sloshing response of liquid in a two dimensional rigid rectangular tank with rigid baffles is investigated using boundary element technique. A baffle is a supplementary structural element which supplies a kind of passive control on the effects of ground shaking. The complicated liquid domain is divided into two simple sub-domains so that the liquid velocity potential in each ...

متن کامل

The generic rank of body-bar-and-hinge frameworks

Tay [6] characterized the multigraphs which can be realized as infinitesimally rigid d-dimensional body-and-bar frameworks. Subsequently, Tay [7] and Whiteley [11] independently characterized the multigraphs which can be realized as infinitesimally rigid d-dimensional body-and-hinge frameworks. We adapt Whiteley’s proof technique to characterize the multigraphs which can be realized as infinite...

متن کامل

Globally Linked Pairs of Vertices in Equivalent Realizations of Graphs

A 2-dimensional framework (G, p) is a graph G = (V,E) together with a map p : V → R2. We view (G, p) as a straight line realization of G in R2. Two realizations of G are equivalent if the corresponding edges in the two frameworks have the same length. A pair of vertices {u, v} is globally linked in G if the distance between the points corresponding to u and v is the same in all pairs of equival...

متن کامل

Twisted Aromatic Frameworks: Readily Exfoliable and Solution‐Processable Two‐Dimensional Conjugated Microporous Polymers

Twisted two-dimensional aromatic frameworks have been prepared by overcrowding the nodes with bulky and rigid substituents. The highly distorted aromatic framework with alternating out-of-plane substituents results in diminished interlayer interactions that favor the exfoliation and dispersion of individual layers in organic media.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015